ANNA UNIVERSITY COIMBATORE B.E / B.Tech DEGREE EXAMINATIONS JAN / FEB 2009 REGULATIONS : 2007 SECOND SEMESTER 070030003 / 4SM1201 – ENGINEERING MATHEMATICS II (COMMON TO ALL BRANCHES)

TIME : 3 HOURS

MAX.MARKS : 100

PART A (20 x 2 = 40 MARKS) ANSWER ALL QUESTIONS

- 1. Find the value of $\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-y}}{y} dx dy$
- 2. Evaluate $\int_{0}^{1} \int_{0}^{x\sqrt{x+y}} \int_{0}^{z\sqrt{x+y}} z \, dz \, dy \, dx$
- 3. Find the area of a circle of radius 'a' in polar coordinates using double integration.
- 4. Find the limits of integration in $\iint_{\mathbb{R}} f(x,y) dx dy$, Where R is the region in the first quadrant and bounded by x = 0, y = 0, x + y = 1.
- 5. Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1,1,1) in the direction of $\vec{i} + \vec{j} + \vec{k}$.
- 6. If ϕ is a scalar point function, then prove that curl $(\operatorname{grad} \phi) = 0$
- 7. State Stoke's theorem.
- 8. Evaluate \iint_{s} (x dy dz + 2y dz dx + 3z dx dy) where S is the closed surface of the Sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
- 9. State any two properties of an analytic function.
- 10. Prove that $f(z) = \overline{z}$ is nowhere analytic.
- 11. Check whether the function $u(x, y) = e^x \sin y$ is harmonic or not.

- 12. Find the critical points of the transformation $w = z^2$.
- 13. Expand log(1+z) in Taylor's series about z = 0.
- 14. Define Removable singularity with an example.
- 15. Calculate the residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ at its pole.
- 16. Evaluate $\int_{C} \frac{Z^2 + 1}{(Z-2)(Z-3)}$ where c is |z|=1.
- 17. State the necessary conditions for the existence of the Laplace transform of a function.
- 18. Verify Initial value theorem for $f(t) = e^{-t} \sinh t$
- 19. Find inverse laplace transform of $\log \frac{s+1}{s}$
- 20. Give an example of a function such that it has Laplace transform but it is not continuous..

PART B ($5 \times 12 = 60$ Marks)

Answer Any FIVE Questions

- 21.(a). Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dx dy$ (6) (b). Find the volume of the tetrahedron bounded by the planes X=0, Y=0, Z=0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$ (6)
- 22.(a). Verify Green's theorem for $\int_{C} ((xy + y^2) dx + x^2 dy)$ where C is the boundary of the common area between $y = x^2$ and y = x. (6)
 - (b). Find the constants a, b, and c so that the vector \vec{F} may be irrotational. Where $\vec{F} = (axy + bz^3) \vec{i} + (3x^2 - cz) \vec{j} + (3xz^2 - y)\vec{k}$ and for these values of a, b, c find the scalar potential of \vec{F} . (6)

23.(a). Derive Cauchy – Riemann equations in cartesian coordinates.

(b). If f(z) is an analytic function, prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$
 (6)

(6)

(6)

24. (a). Find the analytic function
$$f(z) = u+iv$$
 and its imaginary part v, whose
real part is $u = \frac{\sin 2x}{\cos 2x + \cosh 2y}$ (6)

(b). Find the bilinear transformation which maps the points 0, 1, ∞ of z- plane onto the points i, 1, -1 of w-plane.

25.(a). Evaluate using Cauchy's integral formula $\int_{c} \frac{z+1}{z^2+2z+4} dz$, where c is the circle |z+1+i|=2 (6)

(b). Find Laurent's series expansion of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$ in 1 < |z+1| < 3 (6)

26. (a). Evaluate $\int_{c} \frac{z}{(z-1)^{2}(z+1)} dz$ using Cauchy's residue theorem, where c is the circle (i). $|z| = \frac{1}{2}$ (ii). |z| = 2 (3+3) (b). Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5-4\cos \theta} d\theta$ by Cantour integration. (6) 27. (a). Find (i). $L(t^{2}e^{-t}\sin t)$ (ii). $L(\frac{2\sin 2t\sin t}{t})$ (3+3)

(b).Use Convolution theorem to find the Inverse Laplace Transform of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$ (6)

28. (a). Find the Laplace Transform of $f(t) = \begin{cases} t & 0 < t < a \\ 2a - t & a < t < 2a & given f(t + 2a) = f(t) \end{cases}$ (6)

(b). Solve the Differential Equations:

$$\frac{d^2 x}{dt^2} - 3 \frac{dx}{dt} + 2x = e^t , \ x(0) = 1, \ x'(0) = 0$$

***** TNE END *****